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SHORT COMMUNICATIONS

Correction of the measured integrated intensities from cubic metallic single crystals for
thermal diffuse scattering.* By L. H. Scuwartz,t Department of Materials Science and Materials Recearch
Center, The Technological Institute, Northwestern University, Evanston, Illinots, U.S. 4.

(Recetved 3 April 1964 and in revised form 29 April 1964)

Nilsson (1957) has calculated the contribution to the
measured integrated intensities from cubic single crystals
due to the peaking of thermal diffuse scattering near
Bragg reflections, and Chipman & Paskin (1959) have
done this for powders. (These calculations only apply to
ideally imperfect single crystals (Chipman & Batterman
1963).) It has been demonstrated by these authors that
this term can be quite important when accurate inte-
grated intensities are required for high-angle peaks.
Nilsson expressed his results in the following form.
If P is the measured and P, is the true integrated inten-
sity of a peak at 26,,

P=P,(1+a) (1)

where «=a sin 20,K(6—3d’)/A. a is the near-neighbor
distance, J,’ depend on the scanning ranges and
K = (4nkx/3a) (sin? 6,/2)T. = is a complicated function
of the elastic constants. 7' is the temperature in degrees
Kelvin. Because the treatment is in terms of the static
elastic constants, dispersion is not taken into account.
Implicit in Nilsson’s treatment is an assumption about
the relationship of the elastic constants which is violated
by many metals. This occurs for

~(C11=C13—2C 1) (C1; +C15)Cay >0,

_(Cll +012)014

<1.
(011 _012 ‘“2044)(011 + 2012 “044)

Here, Nilsson’s results will be extended to include these
cases.

= Afl(e’ ®)+B (@)
Cfo(6, ) —Df (6, 9) + E
where
A = (0, —=C13—204)(Cy, +C13) =b,(Cy, +C15) s
B = C44(2C,,+C44) »
C = b§(011+2012+044)=b§bz ’
D = —b,(C1,+C12)Cy4 >
B = 0110424 ’

f1(6, @) =sin* 0 sin? g cos? ¢ +sin?  cos? 6,
f2(6, ) =sin? 8 cos? 6 sin? p cos? ¢ ,

0, ¢ are the polar coordinates of the spherical volume
of integration.
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Letting xz=cos 0,
X =
A(l —2?%)? sin? @ cos? ¢ + [A (1 —x?)x% + B]
[C(1 —?)222 — D(1 —x2)?] sin? ¢ cos? @ —[D(1 —x2)x2 —E]"
(3)

When integration with respect to ¢ is carried out the
following expression is obtained:

(! Adx 2 1(—BD—AE + BCx*+ ACx* — ACx%)dx
*= So Ca?—D So (Cz2 — D)/ (I(x?))
(4)
where
I(x?)=4E?-ED + (D*—-6ED + EC)x*
+(D?—CD+7ED —2EC)x*
+(EC —5D2 + 3CD)a® + (3D — 3CD)ad + C D™,

The first term in equation (4) may be written in closed
form as

A c
————tan7{ |/ — D <
“ ade | YD) V) ’
SOCxZ—D_ A yC~yD

2)/(CD) n YC+D

D>0.

The second term in equation (4) must be evaluated by
numerical integration. This process is straightforward for
D <0, but for D>0, D/C <1, there is a singularity at
xy=)/(D/C). Writing the integrand of this term as
F(x), F(x) is expanded about x, so that

F(x) =
H(z,) + H'(2)(Cx% — D) + (1/2)H "(2)(Cx2 —D) + . ..
(Cx? — D) ’
_ Hz,)
h (sz _F) +G(1‘) ’

where H(x) =F(x)(Cx?—D) and the primes denote dif-
ferentiation with respect to z. G(x) has no singularities
in the interval 0 <z <1 and may be evaluated by
standard techniques. H(w,)/(Cx®—D) is antisymmetric
about z,, positive and negative values cancelling at the
positions z, + & for (2z,—1) < z < 1. H(z,)/(Cz* — D) may
be readily evaluated for the remaining interval
0 <z < (2x,—1). When the separation was made, the
following results were obtained:

H(xo) = _A ’
Glx) =

{ = (8ABE +4B2D + A%E) + (4B*C — 6 A2E + A2D)a?
+(SABC +7A42E + A?D)a* — (SABC —4A%C + 5A2D)as
+ (342D —8A42C)a® +4A20x1%)

{2(=BD —AE + BCx* + ACxt — ACz%))/(1(z?)) — A1 (%)}
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Finally, then, for D >0,

we A VC-YD_ S(zro—n dz
T 2)/(CD) YO+ /D

1
ML
(5)

Nilsson (1957) has suggested a simple formula for
derived by taking the mean values of each of the terms
in the numerator and denominator of equation (2)
separately:

561(011+C1a) +Cas(2C1,+Cyy)

Happr. = . 6)
T S T b, + 16111+ Cra)Oag 4 Cri O™

Table 1 shows a comparison between the values of
#appr and % obtained by numerical integration of equation
(5) at intervals of 0-05 in z. The elastic constants used
were those given by Flinn, McManus & Rayne (1960)
for well ordered CuzAu. Of course, for other than mono-
atomic systems, alloys (such as CusAu) or compounds
of atoms of different masses, this correction does not
take into account the more complex nature of the
vibrational spectra. At the present time though, this is
not possible and the type of correction discussed here
is all that is presently feasible. The comparison of the
two calculations in Table 1 shows the type of error
that might occur, even with a monoatomic crystal.

It is clear that the exact formula, equation (5), should
be used for the case D >0, D/C <1. By contrast, Nilsson
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Table 1. » for ordered CuzAu

2(10)12 2appr(10)1%
cm?.dyne! cm?.dyne!
T (equation (5)) (equation (6)) Error (%)
77 °K 312 4-32 +38-4
298 3-91 4-62 +18-2

(1957) showed that for KCl and NaCl, for which D <0,
the agreement was within a few percent.

The author is indebted to Prof. I.Stakgold who
suggested the mathematical technique for evaluating
equation (4) and to Mr P. Gehlen who wrote the program
for the numerical integration. He further wishes to
express his appreciation to Prof. J.B. Cohen for his
encouragement in this work.
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Notes and News

Announcements and other items of crystallographic interest will be published under this heading at the discretion of the
Editorial Board. The notes (in duplicate) should be sent to the General Secretary of the International Union of Crystallo-
graphy (D. W. Smits, Rekencenirum der Rijksuniversiteit, Grote Appelstraat 11, Groningen, The Netherlands).
Publication of an item in a particular issue cannot be guaranteed unless the draft is received 8 weeks before

the date of publication.

Reginald William James, 1891-1964

Sir Lawrence Bragg writes: R. W. James, who died in
Cape Town on 7 July 1964, was one of the pioneers of
X-ray crystallography. James graduated with first-class
honours in Physics at Cambridge in 1912 and for two years
carried out research in the Cavendish. In 1914 he was
invited by Sir Ernest Shackleton to join his antarctic
expedition as physicist, and when the Endurance was
crushed by the ice and the party returned to England
after its rescue, James joined the experimental Sound
Ranging Section for locating enemy guns which had
been established in Belgium under W. L. Bragg. Their
close association in their war work naturally led to
James joining Bragg at Manchester in 1919 when the
latter was appointed Professor of Physics there. It was
in this way that James entered the field of research in
which he was to work for the rest of his life. He col-
laborated with Bragg and Bosanquet in the series of
‘B.J.B.” papers from 1921 onwards which established
the quantitative measurement of X-ray diffraction.
Darwin had formulated the theory for perfect and
imperfect crystals, and the intensive study of diffraction
of sodium chloride as a standard ‘mosaic’ crystal, in

particular the comparison of the integrated reflexion
with the intensity of the incident beam, established the
use of absolute values of F(hkl) in X-ray crystallography.
Two developments stemmed from this work. On the one
hand James and his colleagues made a profound study
of atomic scattering factors and the influence of thermal
movements (Debye effect) and the quantitative measure-
ments culminated in the well known paper by James,
Hartree & Waller in which the zero-point energy was
directly measured. On the other hand, absolute F values
provided crystallographers with a means by which far
more complex crystals could be tackled. James and
Wood were responsible for one of the earliest of these
investigations, the structure of barium sulphate, which
has eleven parameters. This marked a great step forward
at a time when it was widely doubted whether crystals
with more than two parameters could be analysed with
significant results. James’s work at Manchester centred
round the theory of X.ray diffraction and accurate
quantitative measurement. His book The Optical Prin-
ciples of the Diffraction of X-Rays, published in 1948,
has a world-wide recognition as the standard text book
on the subject.

In 1937 James was appointed Professor of Physics



